The inexact Uzawa algorithm for saddle point problem
نویسندگان
چکیده
منابع مشابه
Convergence Analysis of the Modified Nonlinear Inexact Uzawa Algorithm for Saddle Point Problem
This paper focuses on the convergence of the modified nonlinear inexact Uzawa algorithm (MNIU) for solving the saddle point problem. We improve the sufficient conditions for convergence and the convergence rate shown in Bramble et al. [J. Bramble, J. Pasciak, and A. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092] and Y...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولSemi-convergence Analysis of the Inexact Uzawa Method for Singular Saddle Point Problems
Recently, various Uzawa methods were proposed based on different matrix splitting for solving nonsingular saddle point problems, and the necessary and sufficient condition of the convergence for those Uzawa methods were derived. Motivated by their results, in this paper we give the semi-convergence analysis of the inexact Uzawa method which is applied to solve singular saddle point problems und...
متن کاملAn Inexact Uzawa-Type Iterative Method for Solving Saddle Point Problems
As an extension of the inexact Uzawa algorithm addressed in 1], we propose an improved inexact Uzawa-type iterative method for solving saddle point problems. The convergence rate is given in terms of the rates of the two basic iterations as deened in 1], and it is shown that the new algorithm always converges as long as the two basic iterations converge. A running title: Uzawa algorithm for sad...
متن کاملA Modified Preconditioner for Parameterized Inexact Uzawa Method for Indefinite Saddle Point Problems
The preconditioner for parameterized inexact Uzawa methods have been used to solve some indefinite saddle point problems. Firstly, we modify the preconditioner by making it more generalized, then we use theoretical analyses to show that the iteration method converges under certain conditions. Moreover, we discuss the optimal parameter and matrices based on these conditions. Finally, we propose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2000
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(00)00024-0